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Recirculation of input data in frequency-domain 
adaptive filtering 

Filtrage adaptatif dans le domaine de fréquence 
par récirculation de données d'entrée 

By S.J. Chem and K.M. Wong, Department of Electrical and Computer Engineering and Communications Research Laboratory, 
McMaster University, Hamilton, Ontario. 

The recirculation of the input data is proposed in the application of frequency-domain adaptive filtering when the supply of input data is limited. An 
analysis of the performance of such an algorithm is presented and it indicates that superior performance can be achieved Examples of its applications 
in adaptive filtering confirm the results of analysis and demonstrate the effectiveness of the proposed algorithm. 

En filtrage ad^tatif dans le domaine de fréquence, lorsque le nombre des données est limité, on propose un algorithme basé sur la récirculation de 
données d'entiee. On présente une analyse de la performance d'un tel algorithme et démontre que l'on peu obtenir une performance améliorée. On 
donne des exemples d'application en filtrage adaptatif qui confirment les résultats d'analyse et qui démontrent l'efficacité de l'algorithme 
proposé. 

Introduction 

In many engineering applications, adaptive filters are essential. 
Such applications include array processing, noise and echo 
cancellation, statistical estimation, and channel equalization in 
data communication systems. Traditionally, an adaptive filter is 
implemented as a tapped delay line so that the output is the sum of 
the weighted input samples. The values of the tap weights are 
adjusted by a recursive algorithm — most commonly the least mean 
square (LMS) algorithm. An adaptive filter of the type described 
above is called a time-domain adaptive filter since the adjustment of 
its tap weights is based on the sample values in the time-domain. In 
time-domain adaptive filtering, the analysis involved in computing 
the statistics of weight misadjustment can be complicated when the 
desired signal and the input to the filter are highly correlated. 

On the other hand, adaptive filtering can adopt a frequency-
domain approach such that the computationally efficient fast 
Fourier transform (FFT) algorithm is used. The FFT algorithm 
transforms the input signal into the frequency domain and then 
performs the optimization of the tap weights for each frequency bin 
separately. Implementation of the LMS algorithm in the frequen
cy-domain can give significant reductions in computation over the 
conventional time domain. Furthermore, under certain conditions, 
both the mean and the variance of the top weights of the frequency 
domain adaptive filter can be obtained relatively simply allowing 
statistical analysis to be performed1"5, and can often be used to 
predict the performance of time-domain adaptive filtering.2 

In this paper, we introduce the recirculation of the input data in 
adaptive filtering the study and analysis of which are carried out 
in the frequency domain for the reasons stated above. 

The method of recirculating the data is similar to the approach 
discussed in References 10-12, where the on-line algorithm or 
the adaptive algorithm is applied with off-line or batch data to the 
identification problem. The advantages for using such an adaptive 
algorithm for batch data are: 
• If one already has recursive software available, it may be more 

expensive to develop batch software than to use the available 
software. 

• The cost function minimum can sometimes be found faster with a 
recursive algorithm. If the recursive estimates from one pass are 
close to the minimum, then the initial conditions for the next pass 
(being close to the minimum) will essentially bring the estimate to 
the minimum. 

• The recursive algorithms can be used to detect non-stationarities 
in the data and the system properties. 

In the LMS adaptation algorithms, the modes of the adaptive 
process converge at different rates such that the rate of each mode is 
determined by the associated eigenvalues of the input autocorrela
tion matrix. For a large disparity of eigenvalues, in order to keep the 
algorithms stable, the LMS adaptive process may converge slowly, 
and the algorithm suggested by Ogue et. a l 1 4 will be useful in this 
case. 

However, in this paper, we focus on the effects of the recirculating 
data in the adaptive algorithm via the frequency-domain imple
mentation. Furthermore, in our application to broadband noise 
cancellation problems, we consider cases when noise power is much 
higher than signal power. Thus, the power spectrum does not vary 
much with frequency, which results in autocorrelation matrix 
eigenvalues of similar magnitudes. Also, the convergence rates in 
different modes are close. Therefore, the other algorithms which are 
suitable when large eigenvalue disparity exists are not discussed 
here but may be examined in references 13-16. 

We first briefly review the frequency-domain adaptive filtering 
algorithm. The circular convolution frequency-domain adaptive 
filter, illustrated in Figure 1, is different from the conventional 
time-domain filter in that the input signal is processed in blocks. 
The input signal {*(/)} is sectioned into M signal vectors each 
consisting of Ν data samples such that the rath input signal vector is 
given by 

xm = [x(mN)x(mN + 1) . . . x(mN + Ν - \)]T (1) 

An N-point FFT of this signal vector is achieved yielding Ν 
frequency samples, A^(m), k — 0, . . . , Ν — 1, where 
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N-l 

Xk(m) — Σ x(mN + ri)e 
2jt 

Ί Ν nk (2) 

Each of these frequency samples is then multiplied by a tap 
weight Wk(m) to produce an output frequency sample Yk(m). An 
N-point IFFT is then performed on these frequency samples to 
obtain the output vector y m so that 

y_m = {y(mN)y(mN + 1) . . . y(mN + Ν - l ) ] 7 

where 

ι N-\ 2π 

y(mN + η) = - Σ Yk(m)e>Nnk, η = 0, . . . , Ν - 1 

with 

If the mth desired signal vector is dm such that 

dm = [d(mN) d(mN + 1) . . . d(mN + Ν — l ) f 

and its kth frequency sample is given by 

N~] 2z 
Dk(m) = Σ d(mN + n)e'JNnk 

(3) 

(4) 

(5) 

(6) 

(7) 

The object of frequency-domain adaptive filtering is to adjust the 
tap weights Wk(m) so that mean square error ê$ is minimised 
where 

€2

0 = \Ek(m)\2 = \Dk(m) - Yk(m)\2 

[·] denotes the ensemble average. The tap weight, Wk(m\ for each 
frequency sample is adjusted according to the steepest descent 
algorithm6 , 7 

Wk(m + 1) = Wk(m) + fiEk(m)Xt(m\ 0 ^ m ^ M - 1 (9) 

where * denotes the complex conjugate, until a minimum c 2 is 
reached. 

INPUT 

Ν - P O I N T 

F F T 

N-POINT 

FFT"' -Jm 

O u t p u t 

N-POINT 

F F T 

DESIRED 
OUTPUT 

Figure 1: An adaptive filter in the frequency domain. 

The circular convolution frequency-domain adaptive filter 
described above can be employed in many cases in which the 
time-domain adaptive filter is applicable. In this paper, we consider 
the special case of applying it to signal processing cases where the 
number of input signal samples available is often limited. Under such 
circumstances, the adaptive filter may not have sufficient supply of 

signal samples to converge to the state of minimum mean square error 
and, therefore, may not operate in its optimum state. In order to 
improve on this situation, an algorithm is proposed in next section 
that offers a limited supply of signal samples recirculated to the 
adaptive filter so that further adjustment of tap weights can be carried 
out. It is found that the use of this algorithm significantly improves 
the performance of the adaptive filter. An analysis of the effects of the 
signal recirculation is presented and confirmed by computer 
simulation. The performances of the adaptive filters with and without 
signal recirculation are then compared and the results presented. 

Recirculation of input data in frequency-domain adaptive filtering 

To facilitate our analysis, we assume that the frequency-domain 
adaptive filtering is employed in an environment such that the desired 
signal vector d^ and the input signal vector Xm contain a signal vector 
sm buried in statistically independent white noise. Thus, the Mi 
frequency component of dm and x^ are given by 

Dk(m) = akSk(m) + N]k(m) 

Xkim) = Sk(m) + Nlk(m) (10) 

where ak is a complex coefficient. This situation arises very often in 
signal processing especially in problems concerning noise cancella
tion and time-delay estimation. 

Furthermore, we assume that the frequency components of both 
sequences d^ and are zero-mean, white complex circular Gaussian 
processes.8 This means that the signal and noise in the kth frequency 
components are related by the following equations 

[Sk(m)S*k(n)] = ol

Skô„ 

[Sk(m)Sk(n)] = 0 

(8) WAmWtin)] Numn> 

k = 0. . . . , Ν 

Vw, η 

(/ = 1, 2) 

1 

lN]k(m)NUn)] = 0 

(11a) 

(l ib) 

where <p-sk is the signal power in the kxh bin of the FFT of the signal; 
σ 2^ is the noise power in every frequency component (white noise); 
and 8^ is the Kronecker delta. The assumption of signal and noise 
properties in Equation (11) is valid in broad-band noise cancellation 
and in time-delay estimation when the number of time-delay samples 
is small compared to the order of the FFT employed.3 

The configuration of a frequency-domain adaptive filter having 
the ability of recirculation of input data is shown in Figure 2. 
This configuration is similar to a simple circular convolution 
frequency-domain adaptive filter. The additional features are the 
delay elements which carry out the function of storing the signals 

2 . 

INPUT 

N-POINT 

FFT 

^ d e l a y J—J 

> L H DELAY 

LH DELAY 1-Γ 

Ν "POINT 

FFT 

I 
I 

N-POINT 

FFT 
O U T P U T 

Figure 2: A frequency-domain adaptive filter with innut r*>rirrm 
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Bk(M - \)A"k(M - 1) 

Also, since Xk(m) and I\(m) are the recirculated signals, they are f Λ / -1 M - \ \ 
independent of p. = {μ Σ Dk(j)X*k(j) Π [1 ~ μΙ^Οΐ 2] } 

^ 7=0 l=j+\ > 

Wk(p + 1,0) = Wk(pyM) (13) 

Also, since Xk(m) and I\(m) are the recirculated signals, they are ( Λ / -1 M - \ 

Since 

Ek(p, m) = fyim) - Yk(p, m) 

= D^m) - Wk(p, m)Xk(m) (14) 

f M-\ \ 

\ Π [1 - μ\Χ£)\2Τ \ 
V ι=0 i 

Equation (13) can be rewritten as M - \ 

= Σ r£>kU)xt(m - AXMtr 
Wk(p, m 4 - 1) y=o 

= Wk(p, m)[l - iL\Xk(mf] + / ^ ( m ^ m ) (15) 
7 — 1 M —1 

which is a first order difference equation. The solution of which can be Π Π — μ\Χ^ί)\2Τ Π [1 — μ\Χ/<(1)\2Υ+1 (19a) 
wntten as ο /=y+i 

Λ /-1 f 7-1 Λ /-1 
Hi (p , m + 1) = 0) Π [1 - μ\ΧΜ2) = 2 { Θ,(Λ η) Π Φ*0, ») Π **(/, «) } 

' 0 y=0 1=0 /=/+ι i 
(19b) 

μ Σ AOVÎO) Π [1 " μΙ**(0Ι2] w h e r e 

j=0 /=/+! 
θ*0·, ») = μ£>*0')**ΟΧ1 - lL\Xk(jtT (20a) 

^ ( p , 0M,(m) + Bk(m) (16) „ } = ( 1 _ ^ , · ^ ( 2 0 b ) 

where 
and 

2i/î+1 
A*(m) - Π [1 ~ μ\ΧΜ2] < 1 7 a> Ό = Π " ^ ( 0 Ι 2 Γ + 1 (20c) 

/ = o 

Now, Sk(j, n% Φ*(/', η) and n) are uncorrelated since they con-
a n c * tain input signals from different blocks. Therefore, 

m m p 

Bk(m) = μΣ Dk(j)X*k(j) Π [1 " μΙ^ΟΙ 2 ] ( 1 7 b > [Wk(p, A/)] = Σ [2?*(M - - 1)] 
7=0 /-J + 1 ,,=0 

Now, if we start the tap weights at zero value, i.e. lVk(0,0) = 0, then at M _ j _^ 
the beginning of the first recirculation, we have from Equations (13) V / V TFTT—vï Vt Τ7ΓΤ-—^ τ τ τττ,—^1 
and (16), «=ο I y=o /=ο l=j+\ ' 

Xk(m) and Dk(m). These delays must be at least of length samples Wk(\, 0) = Wk(0, M) = Bk(M - 1) 
so as to allow all the input signal samples to be processed first before 
the next recirculation begins. With this extra facility, the notations for and at the end of the first recirculation, we have 
the output signal vector, the error vector, and the tap weights 
of the adaptive filter have to be slightly modified. We let: Wk(\, M) = Bk(M - \)Ak(M - 1) 4 - Bk(M - 1) 

Wk(p, m) be the kih complex tap weight for the mth TV-point signal = Bk(M — 1)[1 + Ak{M — 1)] 
block; 

Again, using Equations (13) and (16) and continuing the recursive 
Yk(p, m) be the kxh output sample for the mth TV-point signal relationship, we have, at the end of the pth recirculation of input 

block; data, 

Ek(p, m) be the kth error sample for the mth TV-point signal p 

b l o c k ' ' Wk(p, Μ) = Σ Bk(M - \)An

k(M - 1) ( 1 8 > 

where ρ denotes the number of times the input data have been 
recirculated. Thus, for a simple frequency-domain adaptive filter with 
no recirculation of input data, ρ — 0. The procedure of steepest 
descent is again used for updating the tap weights, S m c e Dk(m) ^ d xk(m) random variables, Ak{M - 1) and 

_ Bk(M — 1) are also random variables. However, they are correlated. 
Wk(p<m + 1) — Wkyp, m) In order to compute for the mean and mean-square values of the tap 

* _ _ η Ί Λ weights, it is necessary to separate Ak(M — 1) and Bk(M — 1) into 
+ μ£*(/>, m ^ m ) m - ϋ, 1 , . . . , M 1 (12) t h e k ^ u n c o r r e l a t e d parts. From Equations (17a) 

and (17b), 
Note that 
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It can be shown (See Appendix 1) that Again, for a large number of data blocks 

[Gk(j\ η)) iMLko2

sk{\ - 2ni*(o2

Sk + o2

N)} 

[Φ*0', «)] - 1 ~ «μ(<4 + σ2

Ν) 

and 

(22a) 

(22b) 

(22c) 

where c?Sk and σ 2^ are the values of the signal and noise power in the 
kthfrequency component. From Equations (22), we see that the value 
of [Wk(p, M)] is a function of μ Ο 2 ^ + o2^. TO simplify the 
notations, we define the normalized step size Jik as 

M* = tfPsk + 4) (23) 

It is generally chosen such that Jik < 1. Using this condition and 
substituting Equations (22) into Equation (21), the mean of the kth 
tap weight can be expressed as (see Appendix 1) 

Wk(p, M) 
rSk 

(<4 + 4) 
[\-{l-(p + 1 ) & Γ + 2 ] (24) 

Equation (24) gives the mean value of the kth tap weight. It is clear 
that if there is a large number of data blocks (i.e., if M —> oo), then the 
final mean value of the kth tap weight is given by 

lim <*kOs Sk (25) 

which is reminiscent of the optimum Wiener solution. Thus, if we 
have a large number of data blocks, there is no necessity to recirculate 
the input data. However, if the number of data blocks is limited, it can 
be deduced from Equation (24) that by recirculating the input (i.e., 
ρ > 0), the mean value of the tap weight will be closer to the final 
optimum value. 

To find the mean square of the tap weight, we use Equation (18). 
After simplification, we obtain (see Appendix 2) 

\Wk(p,Mf = CXk(p,M- 1) 

+ C2K(p, M - 1) + C3k(p, M - 1) (26) 

where 

Clk(p, M — 1) ~ ^ { l i f U 2 + ( k | 2 + 1} 

M+2 Ρ 

1 - {1 - Tip + m) + 2 Σ {1 - njik)M+2 

(27) 

C2k(p, M - 1) = C3k(p, M - 1) 

WJftl -2{l-(p+ 1)&} Λ/+4 

+ {1 - 2{p + 1 ) & } M + 4 ] (28) 

lim \Wk(p, M)\2 

M—xx> 

nk{\Wkoo\2 + (M l)wkoo + l j + \Wkoo\2 (29) 

The last term in Equation (29) is the square of the mean of the 
tap weight for a large number of data blocks. The first term is 
the variance which is proportional to the normalized step size 

The smaller is Jik, the smaller is the variance. 

The mean-square error for the frequency-domain adaptive filter 
having the input data recirculated ρ times can be simply evaluated as 
follows: 

cp = \Dk(m) - Yk(p, mf 2 _ 

- \akSk(m) - Wk(p, m)Sk(m)\2 + \Nlk(m)\2 

+ \Wk(p, M)N2k(m)\2 

Using Equation (11), we can write 

(30) 

2 _ 2 osk l\«k - Wk(P, M)\2 

+ oN[l + \Wk(p,M)\2) (31) 

Substituting the values of Wk(p, M) and \ Wk(p, M)\2 from Equa
tions (24) and (26) respectively into Equation (31), the value of the 
mean-square error after recirculating the input data ρ times can 
be evaluated. Note that if ρ = 0, the values of Wk(0, M) and 
\Wk(0, M)\2 can be more accurately obtained by using Equations 
(A. 10) and (A.24) respectively in Appendices 1 and 2. Again, if there is 
a large number of data blocks (i.e., for M —» oo), then the mean-square 
error becomes 

2 _ lim ( 
M - * o o 

where 

=4 aSk 
(ok + 

+ 1 

2 i(4t + 4)2 + ( k l 2 - i) Sk 
iPsk + Οχ) 

+ 1 

(32) 

(33) 

(34) 

€ 2 min is a constant for given values of ak, signal and noise 
power, ^mjn represents the lower bound of the mean-square error 
when the frequency-domain adaptive filter is applied to the input 
signal and noise characterized by Equation (11). On the other hand, c 2 

is a non-negative quantity dependent on fik. In theory, if we have 
an infinite amount of input data, we can reduce the mean-square 
error arbitrarily close to the lower bound by choosing a very small 
μ*· For limited supply of data, however, the dependence of êp 
on Wk(p, M) and \Wk(p, M)2\ means that by recirculating the 
input signal, the mean-square error will be reduced further. As a 
comparison of the recirculating algorithms with various values of p, 
we plot the normalized step-size Jik against the relative mean-square 
error which is defined as 

2 < 2 - < 2 - P = ο, 1,.. (35) 
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where is the minimum mean-square error given by Equation 
(33), and êp, the mean-square error of the filter having the in
put data recirculated ρ times, is given by Equation (31 ). The results are 
shown in Figure 3, where M, the number of blocks, is taken to be 160, 
and the signal-to-noise ratio is selected at — 5 dB. The range of values 
of Jik is chosen so that μ̂  1, an assumption necessary to arrive at 
Equation (31). 

• It is observed that the optimum normalized step-size μ^, decreases 
as ρ increases. Furthermore, the optimum normalized step-size 
obeys approximately the relationship that 

(ρ + Ο/ν = 1 2 4 x 1 0 - 2 <36) 
This again is intuitively reasonable because recirculating the input 
data several times is analogous to having larger supply 
of input data for which a smaller Jik yields smaller error. 

ο 
σ 
(/) 
c 
0 φ 
2 

ο 
> 

0 

Simulation and comparison of performances 
To evaluate the performance of the new algorithm of recirculat

ing input data, and to compare it with the normal circular 
convolution frequency-domain adaptive filtering, a computer 
program was written to simulate the two methods. The simula
tion program can essentially be represented by the block diagram 
shown in Figure 4. 

Figure 3: Comparison ofperformances of adaptive filters with various number of input 
recirculations. 

The graphs for various values of ρ exhibit common characteris
tics: 
• For the same value of jD^, c 2 ^ < ^Rq for ρ > q. This result is 

obvious from Equations (24), (26) and (31 ) where it can be observed 
that e2

p decreases with p. 
• Each of the curves decreases as μ̂ . increases until a minimum value 

of c2/^ is reached. Then the relative mean-square error increases 
again beyond this minimum. This result is reasonable because a 
very small normalized step size μ̂  will take a long time (i.e., a large 
amount of data) to converge to the minimum error. For a limited 
supply of input data (M = 160 in this case), a larger Jik will yield 
smaller error. However, a normalized step-size Jik too large will 
yield larger error again since the adjustment will then be too coarse. 
The optimum normalized step-sizes μορι for various values of ρ 
in this particular case are shown in Table 1. The corresponding 
values of e2

Rp are also tabulated. 

Table 1 
Optimum normalized step-size for different values of ρ 

Ρ 

0 0.0108 8.044 X Η Γ 3 

1 0.0063 7.023 X H P 3 

2 0.0044 6.756 X Κ Γ 3 

3 0.0035 6.647 X Κ Γ 3 

SIGNAL 
GENERATOR 

LINEAR 

CHANNEL 

NOISE. 
Generator 

INPUT 

U 

FREQUENCY -
DOMAIN 

adaptive 
F i l t e r 

Figure 4: Block diagram for computer simulation. 

The signal generator produces a discrete circular Gaussian 
process, the Fourier transform of which obeys Equation (1 la). This 
signal is separated into two branches. The lower branch carries 
the signal {s} which encounters additive circular Gaussian noise 
{n{} generated by a noise-generating subroutine. This mixture of 
signal and noise represents the desired signal sequence {d}. The 
upper branch passes the generated signal through a linear channel 
and then a circular Gaussian noise sequence {n2} is added. This 
represents the received signal sequence {jc}. 

The frequency-domain adaptive filters with and without input 
sample recirculation are simulated according to Figures 1 and 2 
respectively. In our simulation, both the adaptive filters utilise an 
FFT of 32 points (i.e. Ν — 32) and both use the complex LMS 
algorithm developed by Widrow et al. 7 The comparison of 
performances is carried out between the adaptive filter without 
input sample recirculation and the adaptive filter which recirculates 
the input samples once only. With m blocks of input data, the filter 
without recirculation facility would have m iterations of adjusting 
the tap-weights. The mean-square error, e 2

0(m) which is a function 
of m, is evaluated. The relative mean-square error, t2

Ro(m) defined 
in Equation (35) for ρ — 0 is then calculated. 

Now, with the same m blocks of input data, the performance of 
the adaptive filter with the facility of recirculating the input data 
once is tested. This is equivalent to having a normal frequency-do
main adaptive filter with no recirculation facility but having the 
same m blocks of input data twice. Again the mean-square error 
€2i(m) and the relative mean-square error e2

R\(m) are calculated. 
The values of €2

R0(m) and €2

R\(m) are plotted for various values of 
m. These theoretical mean-square errors for the two filters are also 
plotted for comparison. The following examples will illustrate the 
comparison of the performances of the two filters. 

Example 1 
In this example we choose the linear channel shown in Figure 4 to 

be a pure delay, i.e., the desired and received signals are respectively 

N o r m a l i z e d G a i n o f S t e p — S i z e 
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given by 

d(n) = s(n) + ri](n) 

x(n) = s(n - v 0 ) + /i2(w) 

where ^ is a constant. The variance of s(n) is chosen to be unity 
and the signal-to-noise ratio at the input of the filter is 9.55 dB so 
that the variances of nx(n) and n2(n) are each equal to 0.1109. The 
total data length used for simulation is 4800 samples and is divided 
into 150 blocks each having 32 samples. These blocks are processed 
by the frequency-domain adaptive filter. For every m blocks of data 
the relative mean-square errors ^Ro(m) and €2

R\(m) are evaluated 
and are plotted in Figure 5. Also shown in Figure 5 are the 
theoretical values of these relative mean-square errors. It can be 
seen that the mean-square errors from simulation agree closely with 
their theoretical counterparts. 

N u m b e r of Blocks 

Figure 5: Comparison of performances for the adaptive filters in example J. 

Other examples were tested, and it was observed that the relative 
mean-square errors from simulations are in very close agreement 
with their theoretical values. Thus, in order to depict the 
comparison of the performances of the two filters so that curves of 
very close values are avoided, only the theoretical values of the 
relative mean-square errors are plotted. Note that, the relative 
mean-square error defined in Equation (35) is the ratio of the 
difference of the mean-square error and the minimum MSE. This 
means that in both the recirculation and without recirculation 
adaptive filtering algorithms we compared the results with the 
reminiscent frequency-domain optimum Wiener solution. Since 
the Dentino-type frequency-domain adaptive algorithm we consid
ered is not the direct realization of the conventional time domain 
LMS algorithm, the reminiscent frequency-domain optimum 
solution is not necessarily equal to the time-domain Wiener 
solution. This implies that the minimum mean-square error in the 
time domain is, in general, not equal to the Dentino-type 
frequency-domain minimum mean-square error. To match the 
assumptions we made in Equations (11) for the frequency-domain 
algorithm, the signals and noises in time domain were assumed to be 
white Gaussian random processes which results in similar values of 
the minimum MSE for both time domain and frequency-domain 
algorithms. 

Example 2 
In this example, the signal model and channel model are chosen 

to be identical to those in Example 1. The purpose here is to show 
the effect of step-size on the relative mean-square error. We 
illustrate two cases, the first has a high signal-to-noise ratio of 10 dB, 
and the second has a low signal-to-noise ratio of — 5 dB. In each 
case we use normalized step-size Jik of 0.01,0.0025 and 0.001 ; and in 
each case we compare the adaptive filter without recirculation of 

input data to that with input data recirculated once. The results are 
shown in Figures 6 and 7 for the high and low signal-to-noise ratio 
respectively. The scale of relative mean-square error in Figure 6 is of 
two orders higher than that in Figure 7. This is because the noise 
power is the same in both cases whereas the signal-to-noise ratios 
are vastly different. However, since the desired signal Dk(n ) consists 
of noise of equal power, the minimum mean-square errors in 
both cases would be of similar order as shown in Equation (33). 
Indeed, the minimum mean-square errors are 1.91 and 1.24 
respectively for the high and the low signal-to-noise ratio cases. In 
all cases, as observed from Figures 6 and 7, recirculating input data 
results in significant performance improvement. 

p . = 0025 

Figure 6: Comparison of performances for the adaptive filters in exan^ple i 

£ o.oi L_ 

/ » β · < 

/ = · 

SNR = -5 dB 

SO 1SO 7 0 0 M O 9BO 

Figure 7: Comparison of performances for the adaptive filters in example 2. 

Conclusion 

In this paper we have introduced an algorithm of recirculating 
input data to a frequency-domain adaptive filter. In employing this 
new algorithm to a situation often encountered in noise cancellation 
and time-delay estimation, we have developed an analysis which 
expresses the mean-square error of the filter as a function of /?, the 
number of data recirculation, and M, the number of data blocks 
available, for given values of signal power, noise power, and 
step-size of tap adjustment. This analysis is confirmed by computer 
simulation. In all test cases, there is significant improvement of the 
adaptive filter performance in terms of mean-square error by 
recirculating the input data. 

In the cases where the number of data blocks is relatively small, 
recirculating the input data once almost invariably reduces the 
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relative mean-square error to half of that yielded by the filter 
without data recirculation. Further recirculation of the data (i.e., 
ρ = 2), however, results in less dramatic improvements. Figure 8 
shows the relative mean-square errors for different number, p? of 
data recirculation. Here, we have chosen that 

(p + \)Ji = 1.24 X 10~ 2 

The reason for this has been stated in Observation 3 for Figure 3 
where the optimum normalized step-size obeys Equation (36). Once 
this relationship is satisfied, we are ensured that an optimum 
normalized step-size is chosen. Furthermore, in the development of 
Equations (A-9), (A-20), (A-21), and (A-22), we have assumed that 
the normalized step-size is very much less than unity. Equation (36) 
again ensures this condition to be satisfied. 

The asymptotic value reached by having large value of ρ in Figure 
8 is not necessarily the minimum mean-square error. The irrinimum 
mean-square error is achieved only if M is sufficiently large. If the 
number of data blocks, M, is not large, then the amount of 
information that can be extracted is limited. To exhaust the amount 
of available information, we recirculate the samples several times so 
that the asymptotic value of mean-square error in Figure 8 is 
reached. In practical applications of adaptive filtering, the supply of 
input data is often limited. It is in such cases that the algorithm 
of recirculation of input data becomes attractive. 
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Figure 8: Comparison of performance for the adaptive filter with different number of 
recirculation. 

Appendix 1 

Here we present the evaluation of the values of Sk(j, n \ Φ,Ο, η) 
and ΨΑ(/, η). Using Equation (20a), we have, 

= [μΟ,ϋ)ΧΪϋ)[Σ (^)(-l)Vl^0)l']} 

= Σ ( ^ ) ( - ι / μ / + , { Α α ) ^ χ ^ ο · ) ^ ) ] 7 } (A.1) 
/ = ( ) v / / 

To find the average value of the terms inside the braces in Equation 
(A.l) we use the result of the moment theorem for a complex, 
zero-mean, circular Gaussian process8 which states that: 

If zn are samples from a zero-mean, complex circular Gaussian 
process, then 

\zm\zm2 · ' ' zmlzn \zn2" ' znl\ 

— Σ (Znm(\)z*\)(zmir{2)z*2) • · · (zηπτ(1)ζ*ΐ) (A.2) 
IT 

where π is a permutation of the set of integers {1, 2 , . . . . , / } . 
If we let 

2 m \ = AO'). 

zm2 = zm3 = • • • ~ Zm,l + 1 = %k(j) 

znl — z*2 ~ · · · = znJ+l ~ X*U) 

then, using Equation (A.2) and noting that there are (/ + 1)! 
permutations among the / + 1 random variables, we have 

{Dk{j)XtU)[XkU)XtU)i} 

= (/ 4- 1 ) ! { A 0 ) * * 0 ) } {XkU)XtU)}1 (A.3) 

But from Equations (10) and (11), 

( A O ) * * 0 ) } = otka2

sk 

{XkU)XtU)} = °lk + 4 (A.4) 

Therefore, substituting Equations (A.3) and (A.4) in Equation 
(A.l), we obtain 

e k = o \ O = Σ M ( - i ) V + 1 ( / + i)w4,(4, + 4 / 
/=o v / / 

- /*«*<4*Π " 2wm(<4a + 4)1 (A.5) 

where we have made the assumption that μ ( σ £ Α 2 + °N2) ^ 1· 
Similarly, we can write, 

•*(/, ») = {l - H ^ ( i ) l 2 r 

/=o v / / 

- Σ (n\-rifn(«sk + 4)7 ^ 1 - "fash + 4) (A.6) 

/=o v / / 

and 

n) = {1 - μ|^( / ) | 2 Γ + 1 

^ 1 - (η + 1)μ(σ2, + a2

N) (A.7) 

To evaluate the expected value of the tap-weight at the end of the 
recirculation of input data, we substituted Equations (A.5-A.7) into 
Equation (21), so that 

ρ M-\ / 
Af) = Σ Σ (mk02sk[\ - 2ημ(σ2, + σ2

Ν)] 

7 - 1 M-\ \ 
Π {1 - nKa2

sk + a2

N)} Π {1 " (η + 1)μ<σ2, + σ2

Ν)} ) 

ι=0 l=j+\ 7 

Ρ 
= Σ μα*σ|*[1 - 2«μ(σ^ + σ^)] 

,ι=0 Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 18,2023 at 08:13:02 UTC from IEEE Xplore.  Restrictions apply. 



CHERN/WONG: ADAPTIVE FILTERING 97 

M- 1 
Σ {1 - n^a2

sk + 4 ) y {1 - (,i + Wo\k + σ 2 , ) } ^ 1 ^ 

./ = 0 
Σ , 2 2 2 2 h 

iuxka"sk[\ - 2npiosk + σΝ)]{\ - ημίρ8Ι< + σ̂ )} 
,/=0 

./=0 Ι" 

2 , 2μ„ /.2 _l _2 χιΛ/-1 

ι - «κ<4 + ^ 

Σ 7 2 2 2 2 Α 
M«*»s*[l ~ 2«μ(σ5Α + σ̂ ΗΙ - ημ(σ3Ιί + σΝ)] 

= - 1)|2 Σ ATM - 1) 
«=ο 

(Α.11) 

Now, from Equation (17b) 

M-\ M-\ 
Σ Σ 
/=0 7=0 

M-\ M-\ r 
\Bk(M - 1)|2 = μ2 Σ Σ \Dk(i)D*kU)XtWkU) 

Λ/-1 M-l 2 2 1 

Π Π {1 - μ Ι Μ }{1 - μ\Χ&η)\ } 

/ = ι + 1 m=/+l J 

Ί - (w + 1)/ι(σ5Ε + 4)] M 

1 - + σ̂ ) J 

Γι - (/ι + i)/W + 4) | 
L 1 - ημίσά + 4) J 

where 

Txk(M - 1) + Γ 2,(Μ - 1) + T3k(M - 1) (A.12) 

Γ„(Μ - 1) 

M-\ r Λ / -1 τ 
= μ2 Σ IA0")I2I^0')I2 Π {1 - μΙ**(/)Ι2Π (A.13) 

7=0 L /=7 + l J 

Wk(p, Μ) = Σ ( 2

α / ^ 2 λ Π - 2nitJsk + σ2,)] 
Λ=ο (σ^ + σ̂ ) 

{[ί - «κ<4 + 4)]M 

- [1 - (η + 1)/ι(<& + o2

N)f) (Α.8) 

Now, μ(σ5Α

2 - f σ̂ 2) «: 1 

Therefore, 

2 /> 
»ί(Ρ. ^ ) ^ , 2 ^ 2 λ

 2 f1 ~ ^ + ^ 2 

(σ5* + Ο Ν) « = 0 

{[1 - *μ<σ̂  + σ2

/)]Μ - [ ! - ( „ + 1)μ(σ̂  + σΝ)]Μ) 2 λιΛ/ι 

Σ {[1 - + σ2

ν)]Λί+2 

Γ 2,(Μ - 1) 

λ/-| ι-! r Μ-\ Μ-\ 
μ2 Σ Σ Π Π 

ι=0 y=0 1 l = i + \ m=j+i 
{1 - μ|^(/) | 2}{1 - HAlk(m)|2}] (Α.14) 

Γ 3 Α(Μ - 1) 

Μ-\ ι-\ r Λ/-1 Λ/-1 

= μ2 Σ Σ \Dt(i)Dk(j)Xk(i)XtU) Π Π 

1=0 7=0 L / = ι + 1 m=/+l 
{1 - μ|Χ,(/)|2}{1 ~ Ml^(m)| 2}] (Α. 15) 

Therefore, 

W(P, Μ)\λ = [T\k(M - 1) + Γ2*(Μ - 1) 4- Γ3*(Μ - 1)] 

(°Sk + ΣΝ) « = 0 

[1 - (ι, + 1)μ(σ2, + σ2

ν)]Λ/+2} 

^ ^ - { 1 - [ 1 - ( P 4 - 1 ) ^ 2 } (Α.9) 
(σ5Λ + σ*) 

Σ Α'1(Μ - 1) 
η=0 

Clk(p, Μ - 1) + C2*(/>, Λ/ - 1) 

+ CTk(p,M- 1) (Α. 16) 

Note: if ρ — 0, then W£(/?, Μ) can be evaluated direct from where 
Equation (A.8) and the last step of approximation in Equation (A.9) 
can be bypassed yielding 

Cxk(p, M - 1) = Γ„(Μ - 1) 

WftO, M) ^ ^ [l - (1 - ju,)̂  

Appendix 2 

(A. 10) 
Σ A"k{M - 1) 

C 2 A (^ , M - 1) = Γ 2 λ (Μ - 1) Σ /ίϊ(Α/ - 1) 
η=0 

Here we present the evaluation of the mean-square value of the 
tap weight. From Equation (18), we have a n ( j 

\Wk(p,M)\ 2 _ Σ Bk(M - \)A'l(M - 1) Cik(p, M - 1) = Tik(M - 1) Σ A'UM - 1) 
«=o 

(A.17) 

i.e., 

1 -

1 -
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Now, 

Cik(p, M - 1) 

= [ r , * ( M - 1) Σ Σ A"k(M - \)AUM - 1)1 

n=0 v=0 J 

[Λ/-1 Λί-1 -ι 

Σ \Dk(j)\2\Xk(j)\2 Π {1 - μ | ^ ( / ) | 2 } 2 

7 = 0 l=j+\ J 

ρ ρ M-\ M-\ - ι ν 

Σ ΣΙ Π {1 - μΙ^Ο)! 2}" Π {1 - μ |^ (λ ) | 2 } | (Α.18) L « = 0 ν = 0 / = 0 λ = 0 

Using the same technique as in Equation (19), we can separate 
Equation (A. 15) into correlated and uncorrelated parts as that 

ρ ρ M— 1 

μ2 Σ Σ Σ Ι Α Ο « 0 ) Ι 2 [ ΐ - μΙ**0·)Ι 2Γ + ν 

η=0 ν = 0 7 = 0 

Π [1 - μ Ι ^ ( 7 ) | 2 Γ + ν Π [1 - μ | ^ ( λ ) | 2 Γ + ν + 2 (Α.19) 
/ = 0 \=j+\ 

Using the moment theorem and the condition that (n 4 ν)μ 
(^sk + O^N) ^ 1, we have, after simplifying, 

τΤΑρ, M - 1) « ξ {|«ΛΙ, + "Ι + } 

{1 - (1 - 2(p + 1)μ(<& + o2

N))M+2} 

+ 2 Σ {1 - «μ(<& + σ2,)} Λ/+2 

- {1 - ( / > + « + 1)K<4 + 4)}M+2] (Α. 20) 

Writing μ* = Kask + σΛί )> >nd simplifying, we have 

CTkiP, M-I) 

-Mi + ( N 2 - 1 ) ^ 4 - + - r ^ k - 2 ) 

[{1 - (1 - 2(/> + 1 )μ , ) Λ ί + 2 } 

+ 2 i {1 - nfo) M+2 

- {1 -{p + n + 

By using a similar approach, we obtain 

M+2 (A.21) 

C2A(/>, M - 1) 

- y S ^ V - 2{1 - (/» + 1)μ*}"+ 4 

4 {1 - 2(/> + l ) f e } M + 4 ] (A.22) 

Since, Equations (A. 12) and (A. 13) are symmetric, then 

CTk(p9 Af — 1) = c£(p, M - 1) (A.23) 

If /? = 0, then \ Wk(0, M) | 2 can be evaluated direct from Equation 
(A. 16) without going through the last step of approximation. This 
gives 

IHftO, M ) | 2 = [Tlk(M - 1) + Γ « ( Α # - 1) + Γ 3 *(Λί - 1)] 

1 4 (|a*|2 - I W 
,2 i„ |2_4 

.2 χ ^ ,_2 

σ 5 * l«*l °sk Sk \ 

(1 - î y - ' { l - (1 - 2fo + 2jS 2)w} 

{(1 - 2fc) - (1 - μ , ) "* 1 + (1 - 2fe 4- 2μ 2 ) Λ / } (A.24) 
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